Flexible hierarchical membranes of WS2 nanosheets grown on graphene-wrapped electrospun carbon nanofibers as advanced anodes for highly reversible lithium storage.

نویسندگان

  • Longsheng Zhang
  • Wei Fan
  • Tianxi Liu
چکیده

It is still very challenging to achieve effective combination of carbon nanofibers and graphene sheets. In this study, a novel and facile method is developed to prepare flexible graphene/carbon nanofiber (GCNF) membranes with every carbon nanofiber wrapped by conductive graphene sheets, resulting in a remarkable improvement of their electrical conductivity. This method only entails a moderate process of soaking the pre-oxidized electrospun polyacrylonitrile (oPAN) nanofiber membranes in graphene oxide (GO) aqueous dispersion, and subsequent carbonization of the GO/oPAN hybrid membranes. By using the highly conductive GCNF membrane as a template, hierarchical WS2/GCNF hybrid membranes with few-layer WS2 nanosheets uniformly grown on GCNF nanofibers were fabricated as high-performance anodes for lithium ion batteries. Benefiting from the synergistic effects of GCNF nanofibers and WS2 nanosheets, the resulting WS2/GCNF hybrid membranes possessed a porous structure, large specific surface area, high electrical conductivity and good structural integrity, which are favorable for the rapid diffusion of lithium ions, fast transfer of electrons and overall electrochemical stability. As a result, the optimized WS2/GCNF hybrid membrane exhibited a high initial charge capacity of 1128.2 mA h g-1 at a current density of 0.1 A g-1 and outstanding cycling stability with 95% capacity retention after 100 cycles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth of Hierarchal Mesoporous NiO Nanosheets on Carbon Cloth as Binder-free Anodes for High-performance Flexible Lithium-ion Batteries

Mesoporous NiO nanosheets were directly grown on three-dimensional (3D) carbon cloth substrate, which can be used as binder-free anode for lithium-ion batteries (LIBs). These mesoporous nanosheets were interconnected with each other and forming a network with interval voids, which give rise to large surface area and efficient buffering of the volume change. The integrated hierarchical electrode...

متن کامل

Elastic Carbon Aerogels Reconstructed from Electrospun Nanofibers and Graphene as Three-Dimensional Networked Matrix for Efficient Energy Storage/Conversion

Three-dimensional (3D) all-carbon nanofibrous aerogels with good structural stability and elasticity are highly desirable in flexible energy storage/conversion devices. Hence, an efficient surface-induced co-assembly strategy is reported for the novel design and reconstruction of electrospun nanofibers into graphene/carbon nanofiber (CNF) composite aerogels (GCA) with hierarchical structures ut...

متن کامل

3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage

New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable meso-pores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydro...

متن کامل

3D Interconnected V6O13 Nanosheets Grown on Carbonized Textile via a Seed-Assisted Hydrothermal Process as High-Performance Flexible Cathodes for Lithium-Ion Batteries

Three-dimensional (3D) free-standing nanostructured materials have been proven to be one of the most promising electrodes for energy storage due to their enhanced electrochemical performance. And they are also widely studied for the wearable energy storage systems. In this work, interconnected V6O13 nanosheets were grown on the flexible carbonized textile (c-textile) via a seed-assisted hydroth...

متن کامل

Graphene Oxide Wrapped Amorphous Copper Vanadium Oxide with Enhanced Capacitive Behavior for High‐Rate and Long‐Life Lithium‐Ion Battery Anodes

Graphene oxide-wrapped amorphous copper vanadium oxide is fabricated through a template-engaged redox reaction followed by vacuum dehydration. This material exhibits high reversible capacity, excellent rate capability, and out standing high-rate cyclability. The outstanding performance is attributed to the fast capacitive charge storage and the in situ formed copper with enhanced electrical con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 8 36  شماره 

صفحات  -

تاریخ انتشار 2016